Thursday, 20 April 2017

M Punktverschiebender Mittelwertfilter

Frequenzgang des laufenden Mittelfilters Der Frequenzgang eines LTI-Systems ist die DTFT der Impulsantwort, Die Impulsantwort eines L-Sample-gleitenden Mittelwerts Da der gleitende Mittelwert FIR ist, reduziert sich der Frequenzgang auf die endliche Summe We Kann die sehr nützliche Identität verwenden, um den Frequenzgang zu schreiben, wo wir ae minus jomega haben lassen. N 0 und M L minus 1. Wir können an der Größe dieser Funktion interessiert sein, um zu bestimmen, welche Frequenzen durch den Filter ungedämpft werden und welche gedämpft werden. Unten ist ein Diagramm der Größe dieser Funktion für L 4 (rot), 8 (grün) und 16 (blau). Die horizontale Achse reicht von Null bis pi Radiant pro Probe. Man beachte, daß der Frequenzgang in allen drei Fällen eine Tiefpaßcharakteristik aufweist. Eine konstante Komponente (Nullfrequenz) im Eingang durchläuft das Filter ungedämpft. Bestimmte höhere Frequenzen, wie z. B. pi / 2, werden durch das Filter vollständig eliminiert. Wenn es aber die Absicht war, ein Tiefpassfilter zu entwerfen, dann haben wir das nicht sehr gut gemacht. Einige der höheren Frequenzen sind nur um einen Faktor von etwa 1/10 (für den 16-Punkt-Bewegungsdurchschnitt) oder 1/3 (für die Vierpunkt-gleitender Durchschnitt) gedämpft. Wir können viel besser als das. Der oben genannte Plot wurde durch den folgenden Matlab-Code erzeugt: omega 0: pi / 400: pi H4 (1/4) (1-exp (-iomega4)) ./ (1-exp (-Iomega)) H8 (1/8 ) (1-exp (-iomega)) - (1-exp (-iomega)) - Geispiel (Omega , Abs (H4) abs (H8) abs (H16) Achse (0, pi, 0, 1) Copyright-Kopie 2000- - Universität von Kalifornien, BerkeleyOriginal Post: Lesen Sie hier MATLAB Programm für M - , Werden wir heute lernen, wie man ein MATLAB-Programm für m Punkt bewegenden averagr-Filter schreiben. Schritte zum Schreiben eines M-Punkt-Verschiebungs-Durchschnittsfilterprogramms in MATLAB: 1) Nehmen Sie ein gegebenes Signal 2n (0.9) n und bezeichnen es mit s (n). 2) Dann ein zufälliges Rauschsignal mit der gleichen Länge (50) wie das von s (n) erzeugen und mit d bezeichnen. 3) Dann addieren Sie sd und speichern Sie es in p, d. h. psd. 4) Wir wissen, dass die Formel für m Punkt gleitenden Mittel-Filter gegeben ist durch 5) Um Summierung zu bestimmen, verwenden Sie eine für Schleife. 6) Schließlich teilen Summation durch M, erhalten Sie ursprüngliches Signal. Das MATLAB-Programm: Moving Average Filter (MA Filter) Wird geladen. Das gleitende Mittelfilter ist ein einfaches Tiefpassfilter (Finite Impulse Response), das üblicherweise zum Glätten eines Arrays von abgetasteten Daten / Signalen verwendet wird. Es benötigt M Abtastwerte von Eingang zu einem Zeitpunkt und nimmt den Durchschnitt dieser M-Abtastungen und erzeugt einen einzigen Ausgangspunkt. Es ist eine sehr einfache LPF (Low Pass Filter) Struktur, die praktisch für Wissenschaftler und Ingenieure, um unerwünschte laute Komponente aus den beabsichtigten Daten zu filtern kommt. Mit zunehmender Filterlänge (Parameter M) nimmt die Glätte des Ausgangs zu, während die scharfen Übergänge in den Daten zunehmend stumpf werden. Dies impliziert, dass dieses Filter eine ausgezeichnete Zeitbereichsantwort, aber einen schlechten Frequenzgang aufweist. Der MA-Filter erfüllt drei wichtige Funktionen: 1) Es benötigt M Eingangspunkte, berechnet den Durchschnitt dieser M-Punkte und erzeugt einen einzelnen Ausgangspunkt 2) Aufgrund der Berechnungen / Berechnungen. Führt das Filter eine bestimmte Verzögerung ein 3) Das Filter wirkt als ein Tiefpaßfilter (mit einer schlechten Frequenzbereichsantwort und einer guten Zeitbereichsantwort). Matlab-Code: Der folgende Matlab-Code simuliert die Zeitbereichsantwort eines M-Point Moving Average Filters und zeigt auch den Frequenzgang für verschiedene Filterlängen. Time Domain Response: Auf dem ersten Plot haben wir die Eingabe, die in den gleitenden Durchschnitt Filter geht. Der Eingang ist laut und unser Ziel ist es, den Lärm zu reduzieren. Die nächste Abbildung ist die Ausgangsantwort eines 3-Punkt Moving Average Filters. Es kann aus der Figur abgeleitet werden, dass der Filter mit 3-Punkt-Moving-Average bei der Filterung des Rauschens nicht viel getan hat. Wir erhöhen die Filterabgriffe auf 51 Punkte und wir können sehen, dass sich das Rauschen im Ausgang stark reduziert hat, was in der nächsten Abbildung dargestellt ist. Wir erhöhen die Anzapfungen weiter auf 101 und 501, und wir können beobachten, dass auch wenn das Rauschen fast Null ist, die Übergänge drastisch abgebaut werden (beobachten Sie die Steilheit auf beiden Seiten des Signals und vergleichen Sie sie mit dem idealen Ziegelwandübergang Unser Eingang). Frequenzgang: Aus dem Frequenzgang kann behauptet werden, dass der Roll-off sehr langsam ist und die Stopbanddämpfung nicht gut ist. Bei dieser Stoppbanddämpfung kann klar sein, daß der gleitende mittlere Filter nicht ein Band von Frequenzen von einem anderen trennen kann. Wie wir wissen, führt eine gute Leistung im Zeitbereich zu einer schlechten Leistung im Frequenzbereich und umgekehrt. Kurz gesagt, ist der gleitende Durchschnitt ein außergewöhnlich guter Glättungsfilter (die Aktion im Zeitbereich), aber ein außergewöhnlich schlechtes Tiefpaßfilter (die Aktion im Frequenzbereich) Externe Links: Empfohlene Bücher: Primäre SeitenleisteDer Wissenschaftler und Ingenieure Leitfaden für Digitale Signalverarbeitung Von Steven W. Smith, Ph. D. Wie der Name andeutet, arbeitet das gleitende Mittelfilter durch Mittelung einer Anzahl von Punkten von dem Eingangssignal, um jeden Punkt im Ausgangssignal zu erzeugen. In Gleichung ist dies geschrieben: Wo ist das Eingangssignal, ist das Ausgangssignal und M ist die Anzahl der Punkte im Mittelwert. Beispielsweise ist bei einem 5-Punkt-Gleitmittelfilter Punkt 80 im Ausgangssignal gegeben durch: Alternativ kann die Gruppe von Punkten aus dem Eingangssignal symmetrisch um den Ausgangspunkt gewählt werden: Dies entspricht der Änderung der Summation in Gl . 15-1 von: j 0 bis M -1, bis: j - (M -1) / 2 bis (M -1) / 2. Zum Beispiel wird in einem 10-Punkt-gleitenden Durchschnittsfilter der Index j. Kann von 0 bis 11 (einseitige Mittelung) oder -5 bis 5 (symmetrische Mittelung) laufen. Symmetrische Mittelung erfordert, dass M eine ungerade Zahl ist. Die Programmierung ist etwas einfacher mit den Punkten auf nur einer Seite, jedoch ergibt sich eine relative Verschiebung zwischen den Eingangs - und Ausgangssignalen. Sie sollten erkennen, dass das gleitende Durchschnittsfilter eine Faltung mit einem sehr einfachen Filterkern ist. Zum Beispiel hat ein 5-Punkt-Filter den Filterkern: 82300, 0, 1/5, 1/5, 1/5, 1/5, 1/5, 0, 08230. Das heißt, das gleitende Mittelfilter ist eine Faltung Des Eingangssignals mit einem Rechteckimpuls mit einer Fläche von Eins. Tabelle 15-1 zeigt ein Programm zur Umsetzung des gleitenden Durchschnittsfilters. Moving Average - MA BREAKING DOWN Moving Average - MA Als SMA-Beispiel gilt eine Sicherheit mit folgenden Schlusskursen über 15 Tage: Woche 1 (5 Tage) 20, 22 , 24, 25, 23 Woche 2 (5 Tage) 26, 28, 26, 29, 27 Woche 3 (5 Tage) 28, 30, 27, 29, 28 Eine 10-tägige MA würde die Schlusskurse für den ersten Durchschnitt ausmachen 10 Tage als ersten Datenpunkt. Der nächste Datenpunkt würde den frühesten Preis senken, den Preis am Tag 11 addieren und den Durchschnitt nehmen, und so weiter, wie unten gezeigt. Wie bereits erwähnt, verzögert MAs die aktuelle Preisaktion, weil sie auf vergangenen Preisen basieren, je länger der Zeitraum für die MA ist, desto größer ist die Verzögerung. So wird ein 200-Tage-MA haben eine viel größere Verzögerung als eine 20-Tage-MA, weil es Preise für die letzten 200 Tage enthält. Die Länge des zu verwendenden MA hängt von den Handelszielen ab, wobei kürzere MAs für den kurzfristigen Handel und längerfristige MAs eher für langfristige Anleger geeignet sind. Die 200-Tage-MA ist weithin gefolgt von Investoren und Händlern, mit Pausen über und unter diesem gleitenden Durchschnitt als wichtige Trading-Signale. MAs auch vermitteln wichtige Handelssignale auf eigene Faust, oder wenn zwei Durchschnitte überqueren. Eine steigende MA zeigt an, dass die Sicherheit in einem Aufwärtstrend liegt. Während eine sinkende MA zeigt, dass es in einem Abwärtstrend ist. In ähnlicher Weise wird das Aufwärtsmoment mit einem bulligen Crossover bestätigt. Die auftritt, wenn eine kurzfristige MA über einem längerfristigen MA kreuzt. Die Abwärtsmomentum wird mit einem bärischen Übergang bestätigt, der auftritt, wenn ein kurzfristiges MA unter einem längerfristigen MA liegt.


No comments:

Post a Comment